

Objective

- Overview of Variable Frequency Drives (VFDs)
- Evaporator fan operation
 - ☐ Part-load operational considerations
- Comparison with fixed speed
 - □ Opportunities
 - □ Challenges

Notes:

- •Other names for a VFD are
 - •Variable Speed Drive (VSD)
 - •Adjustable Speed Drive (ASD)
 - •Adjustable Frequency Drive (AFD)

Variable Frequency Drives

- Motor requirements
 - □ Inverter-duty may be necessary
- VFD requirements & characteristics
 - □ Drive must be within 50-100 ft of application[†]
 - □ May apply a single drive to more than one motor
 - Size drive for total connected horsepower
 - Individual motor over-current protection required
 - □ Startup torque is reduced
- Power factor
 - □ Near unity (1) for VFDs w/harmonics-mitigating equip.

† manufacturer dependent

Variable Frequency Drives

Applicable fan laws

$$\frac{N}{N_{full-load}} = \frac{CFM}{CFM_{full-load}}$$

$$\frac{N}{N_{full-load}} = \frac{CFM}{CFM_{full-load}} \qquad \frac{hp}{hp_{full-load}} = \left(\frac{CFM}{CFM_{full-load}}\right)^{3}$$

- Limitations
 - □ Typical minimum motor speeds between 20-30-Hz
- Impact on heat exchange

$$\frac{Capacity}{Capacity_{full-load}} = \left(\frac{CFM}{CFM_{full-load}}\right)^{0.76}$$

VFD Benefits (continued)

- Improved power factor
 - □(especially on small horsepower motors)
- Decreased noise and "wind-chill"
- Increased control, more stable temperature control

Notes:

- •Power factor on a standard efficiency motor less than 1-hp can be as low as 0.59.
- •Power factor on a premium efficiency motor less than 1-hp can be as low as 0.78.

VFD Drawbacks

- Drive losses (~4-6%, losses increase at low loads)
- Loss of evaporator "throw"
- Typical systems have large number of small evaporator fan motors (cost)
- Additional equipment to maintain
- Resonance of equipment (natural frequency)
- Power quality
- Siting of the drive

When to considered VFDs

- Load requires close temperature control
- Large fans and motors
 - □ Blast freezers, penthouse freezer evaporators with ducting, etc.
- Low TD installations
 - □ Not necessarily requiring low TD for space conditions
- Significant and frequently occurring part-load operation
 - □ Northern climates
- High electricity rates

Impact of Evaporator Liquid Feed Configuration

- Direct Expansion
 - □ Care must be taken with sizing of thermal expansion valve and distributor, and coil circuiting for low load conditions
- Gravity Flooded
 - ☐ Good fit because liquid feed is proportional to load
- Overfeed
 - □ Liquid supply rate is independent of load
 - □ Suction riser should be sized to overfeed at part-load conditions

How much can I save?

- Evaporator fan horsepower usually a small fraction of the system horsepower at full-load
 - □ Low TD load requirements result in larger contribution to the system horsepower & parasitic refrigeration load
- Part-load
 - □ Defined as actual load divided by the installed evaporator capacity
 - ☐ If no fan control, the fan horsepower contribution to the system horsepower is constant

Assumptions:

Cooler:

- •Fully loaded single-stage screw compressor with thermosiphon oil cooling, average discharge pressure of 165 psia (85°F), includes package losses
- •Compressor motor efficiency of 93%
- •Evaporator fan motor efficiency of 78% (0.75 hp, 3-phase, 460 volt, 1,140 rpm)
- •VFD drive efficiency of 96% at full-load

Freezer:

- •Fully loaded two-stage screw compressor with thermosiphon oil cooling, average discharge pressure of 165 psia (85°F), includes package losses
- •Compressor motor efficiency of 93%
- •Evaporator fan motor efficiency of 78% (0.75 hp, 3-phase, 460 volt, 1,140 rpm)
- •VFD drive efficiency of 96% at full-load

Assumption:

•22.5 hours per day in refrigeration mode

Notes:

- •Prices taken from www.grainger.com in December, 2003.
- •Less expensive VFDs are available if a suitable enclosure already exists or is part of the new installation.
- •NEMA 4 (waterproof) requirements results in higher cost, particularly for small horsepower drives.

Economic Analysis

	Cooler (35°F)	Freezer (-20°F)
From always on fan control to VFD		
Savings per ton	\$45	\$60
Capital cost per ton [†]	\$65	\$95
Installation cost per ton	\$40	\$60
Simple payback	2.3 years	2.6 years
From cycling fan control to VFD		
Savings per ton	\$30	\$40
Simple payback	3.8 years	3.6 years

[†] Purchase of a single drive to operate all fan motors (4) on evaporator.

