Evaporative Condenser Control in Industrial Refrigeration Systems

by Manske, Reindl & Klein

Title: Evaporative Condenser Control in Industrial Refrigeration Systems

Author(s): Manske
                Reindl & Klein

Size: 199.8KB

This paper is a result of a research project, which focused on optimization of an existing industrial refrigeration system for a large two-temperature level cold storage distribution facility located near Milwaukee, Wisconsin. This system utilized a combination of single-screw and reciprocating compressors (each operating under single-stage compression), an evaporative condenser, and a combination of liquid overfeed and direct expansion evaporators. A mathematical model of the existing system was developed. The model was validated using experimental data recorded from the system. Subsequently, the model served as a tool to evaluate alternative system design and operating strategies that lead to optimum system performance. The methods, analysis, and results presented in this paper focus on evaporative condenser sizing and head pressure control. Operating system head pressures that minimize the energy costs of the system were found to be a linear function of the outdoor wet-bulb temperature. A methodology for implementing the optimum control strategy is presented. Simulation results for the annual performance of the refrigeration system investigated in this project show a reduction in annual energy consumption by 11% as a result of the recommended design and control changes.