Refrigeration System Performance using Liquid-Suction Heat Exchangers

by Kyle Brownell, Sanford Klein, Douglas Reindl

Title: Refrigeration System Performance using Liquid-Suction Heat Exchangers

Author(s): Kyle Brownell
                Sanford Klein
                Douglas Reindl

Size: 109.6KB

Heat transfer devices are provided in many refrigeration systems to exchange energy between the cool gaseous refrigerant leaving the evaporator and warm liquid refrigerant exiting the condenser. These liquid-suction or suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. Although previous researchers have investigated performance of liquid-suction heat exchangers, this study can be distinguished from the previous studies in three ways. First, this paper identifies a new dimensionless group to correlate performance impacts attributable to liquid-suction heat exchangers. Second, the paper extends previous analyses to include new refrigerants. Third, the analysis includes the impact of pressure drops through the liquid-suction heat exchanger on system performance. It is shown that reliance on simplified analysis techniques can lead to inaccurate conclusions regarding the impact of liquid-suction heat exchangers on refrigeration system performance. From detailed analyses, it can be concluded that liquid-suction heat exchangers that have a minimal pressure loss on the low pressure side are useful for systems using R507A, R134a, R12, R404A, R290, R407C, R600, and R410A. The liquid-suction heat exchanger is detrimental to system performance in systems using R22, R32, and R717.